

Circuit Design for Micro-Electromechanical Resonators for Sensing Applications

J. Pettine, V. Petrescu and C. Van HoofUltra Low Power Analog InterfacesWATS, Holst Centre/imec, Eindhoven, The Netherlands

Outline

Motivation and Previous Work

Internal Resonator Background

Readout Specifications and Implementation

Proof of concept with Ethanol

Julia Pettine – WATS – IS-AHND 2011

Motivation for Gas Detection Systems

Applications

Health and environment monitoring

- Highly sensitive
- Selective
- Scalable/Wearable
- Low Power

Pollution

Breath

\rightarrow Good candidate : MEMS-based oscillator sensor

Previous Work

[1] Cantilever

- Thermal actuation
- Wheatstone bridge sensing
- Co-integration

🗆 [2] CMUT

- 40-60V DC biasing
- Large area for parallelism
- Amplifier and band-pass filter readout

This work: Transimpedance amplifier interfacing a piezoelectric doubly-clamped beam

[1] C. Hagleitner et al, IEEE J. Solid-State Circuits, 37, 1867-1878, 2002.[2] K.K.Park et al, Appl. Phys. Letters, 91, 094102, 2007.

Internal Doubly-clamped Resonator Background

D.M. Karabacak et al, Lab on a Chip, 2010, 10, 1976-1982

Julia Pettine – WATS – IS-AHND 2011

Julia Pettine – WATS – IS-AHND 2011

Sensor Interface Challenges

□ Resonator Characteristics

Resonance frequency [MHz]	Motional impedance R _m [kΩ]	Quality factor Q	Parasitic capacitance C _p [pF]
1.8-2.1	50-150	100-300	3-4

□ Interface Challenges

- Minimize the parasitic interconnections
- Define the circuit specifications to account for sensor process variability
- \rightarrow Obtain an optimal detection resolution

From a Resonator to an Oscillator

 \rightarrow Allan deviation @2 MHz= 2 Hz \rightarrow Phase noise?

From Allan deviation to Phase noise

Target Allan deviation $<\frac{\delta f}{f_0}>_{\tau}=\sigma_y(\tau)=10^{-6}$

□ In the region of τ^0 corresponding to flicker of frequency $\sigma_y^2(\tau) = h_{-1} 2 \ln 2\tau^0$ and $L(f_m) = \frac{1}{2} h_{-1} f_0^2 f_m^{-3}$

→ For 2 MHz oscillator L(1k) = -88 dBc / Hz

→ For NEMSIC 150 MHz resonators→ L(1k) = -51 dBc / Hz

X.L Feng et al, Nature Nanotechnology, 2008, 3, 342-346

Oscillator Phase Noise

Phase noise formula

→ Minimize parasitic effects and electronic noise contribution

Discrete Oscillator-based Readout

Readout

- 4-stage TIA
- Differential outputs

Measurements

- R_{amp}[36 k-720 kΩ]
- input noise<80 nV/sqrt(Hz)
- BW~10 MHz

Discrete Oscillator Characterization

M. Patrascu, J.Pettine et.al, Proc. Eurosensors XXV, accepted for publication, 2011.

Julia Pettine – WATS – IS-AHND 2011

Discrete Oscillator Phase Noise

Phase noise @ 1 kHz offset =-89 dBc/ Hz
Equivalent Allan deviation (1s) ~ 2 Hz

D. Allan et. al, Freq.Control Symp, 1988, 419-425

Proof of concept with Ethanol

Response to intermittent flows with 1000 ppm of ethanol

Julia Pettine – WATS – IS-AHND 2011

Conclusions

Design of oscillator-based readout for sensing applications

- Methodology for specifications definition
- Discrete implementation
- Proof of concept with ethanol detection

- Readout design for NEMSIC resonators (VBFET, Nano-wires) under development
- Characterization of the oscillator and the sensing functionality

Acknowledgements: M. Patrascu, D. M. Karabacak, M. Vandecasteele

Thank you for your attention

Any questions ?

Julia Pettine – WATS – IS-AHND 2011

An Open-Innovation Initiative by Limec and

16